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PERIODIC SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH

TIME LAG CONTAINING A SMALL PARAMETER

By Carlos Perelld

Introduction.

In this paper we show that the method of Cesari and Hale for the deter-
mination of periodic solutions of ordinary differential equations can be extend-
ed to the case in which these equations contain a time lag.

An ordinary differential equation with time lag (also called functional
differential equation) differs from those without lag in that the derivative
of a solution function at a time t depends also on the values of this sol-
ution at times preceding t. We further restrict our equations by considering
only time lags less than a fixed number r.

In the notation introduced by Hale [1] we consider equations of the form
() x(t) = F(t, x,),

where F denotes a functional (real or complex) defined for each t and for

the "segment of solution" x

" of length r, preceeding t. Here x denotes

an n-vector.

As a particular case we encounter the difference-differential equations
() x(t) = £(¢, x(t), X(t-Tl),...,X(t-Tl)).
We will consider here equations of the form

(v x(t) = L(Xt) + N(t, Xeo ),

where L is linear in x, (in a space to be defined) and N(t, @, u) tends

to zero asboth @ and the parameter p tend to zero.



In analogy with what has been done for ordinary differential equations
(see Hale [2]), we seek a method to determine the T-periodic solutions of ()
when N 1is T-periodic in t.

Many of the methods which have been considered for ordinary differential
equations are difficult to apply in the case of time lag as will be shown in
the next paragraphs.

If in (¢) F is T-periodic in t, we might assume that our solution
has a trigonometric Fourier expansion of period T. We then reduce the problem
of finding a T-periodic solution of (&) to that of solving the infinite number
of equations obtained by equating coefficients. Making the above reduction
and solving the equations which result is in general extremely difficult even
when there 1s no lag present.

Cesari [3] shows that for nonlinear equations without lag it is not
necessary to consider an infinity of solu£ions, but merely to see if some
elements of a family of periodic functions, which are obtained as fixed points
of a family of operators, satisfy a finite number (2m+l) of "determining
equations". Any of these fixed points which satisfies the determining equations
is a periodic soluﬁion. The difficulty lies in finding the fixed points and
verifying that they satisfy the determining equations. By means of an implicit
function theorem, however, he succeeds in showing that under certain circum-
stances it is sufficient to consider the (2m1)-parameter family of trigonometric
polynomial containing the first m harmonics instead of the family of fixed
points. The determining equations can then actually be used to calculate the
2m+l coefficients of the Polynomials satisfying them. Further it can be shown
that the functions thus obtained lie in the vicinity of the periodic solutions

of the equation. This is nothing more than the justification of the Galerkin




procedure. The method is still very difficult to apply, even in the most
simple cases.

The generalization of the above method to equations with lag will not be
attempted here and will be the subject of some further publication. Let us re-
mark, however, that the method of Cesari in [3] relies on the use of L2 spaces
and these do not seem the most appropriate for equations like (B), which we want
to be able to include in our theory. It looks as if the modification of the
method introduced by Knoblock [4] using uniform norms would generalize without
trouble to lag equations including the difference-differential type.

The basis of the perturbation procedure of Cesari and Hale for (y) without
lag, as it is shown in the last part of [3], is essentially the same as in the case
above. Now, however, we look for periodic solutions of the perturbed system
which tend to periodic solutions of the linear system as the parameter u
tends to zero.

The generalization of this procedure to lag equations is made possible
by decomposing equation (Y) by means of the projection operators defined by
Hale [1]. We then obtain an ordinary differential equation without time lag
perturbed with a term containing some lag element which couples this equation
with a second one. By neglecting this lag element we obtain an ordinary per-
turbation problem which can be dealt with by the methods mentioned above. For
small p the periodic solutions of the unperturbed equation yielded by the
determining equations are close to periodic solutions of equation (Y). In a first
approximation we want to find the periodic solution of the linear equation to
which the periodic solutions of the perturbed one tend.

The basic idea behind the decomposition in [1] and the reduction of the
problem to equations without lag is to consider a function space as our phase

space. Notice that the initial value problem for equation (@) is well posed
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if we give as initial condition a function defined in an interval of length r.
In fact there might be an infinity of functions which satisfy the equation and
pass through a given point of the n-dimensional euclidean space,

In section I we give the required background material on equations with
time lag. In section II we develop the method for (Y) nonautonomous. The re-
duction of (7) autonomous to the previous case is treated in section III. In
the next section we show how the basic procedure can be used to determine the
asymptotic stability of a periodic solution. In order to do that we require

some simple results from the theory of periodic linear equations with time lag

that we borrow from Stokes [5] and Shimanov [6]. In section V we present a
simple example arising from a control system with a delay in the feedback.
Section VI is devoted to the procedure to be followed when we have to use
higher order terms to ascertain the existence of periodic solutions and an

example of the application of this procedure is given.



I. Preliminaries.

Let En be the n-dimensional complex euclidean space and consider the
continuous function x : [-r, 7) —éEn, 7, * > 0. Consider also the space
C([-r, o], En) = C of the continuous functions defined in the closed interval
[-r, 0] with range in En, with the sup norm. We define the operator éﬁ;

associating an element of € to x for every t in [0, T) by means of the

rule
s%t(x) =x(t+96), 6 in [-r, O].

In order to simplify the notation we shall use ﬂﬂ;(x) = X (See Hale [1]).

4
Given a functional F : R X C »E° an letting X(t) represent the

right hand derivative of x at t, we define a functional-differential equation

as the relation

(1) x(t) = F(t, xt).

The function F does not need to be defined on the whole of R X C.

In fact for our use in this work we shall suppose it defined for all R and in

an open ball Cy= (@ €C : lo|| < H} .
We say that x(o, @) : [0 -1, T) = E' is a solution of (1) with initial
value @ at o if there exists 1T >0 such that xt(o, @) is in CH for t
in (o, T), XU(U’ ®) = ¢ and (1) is satisfied by x(o, @¢)(t), t in [o, 7).
If (1) is autonomous, i.e., F does not depend explicitly on t, and
we choose 0 = 0, we abbreviate xt(d, ®) by xt(w).

Consider the case in which (1) is autonomous and F is a continuous linear

functional:
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(2) u(t) = L(ut).

This case is particularly important to us, since most of the properties
of our perturbed equations (y) depend on the unperturbed ones.

In the next paragraphs we summarize the parts of the theory of (2)
which are relevant to this work. For a more detailed exposition, with proofs,
see [1].

The Riesz representation theorem tells us that we can write

0]

(3) L(®) = J [an(6)1e(s) ,

-

where 1(8) is an n X n matrix of function of bounded variation on [-r, O].
On the other hand it is well known that (2) has a unique solution defined for
t in [0, w) for any initial value @ in C at zero (see Krasovskii (7],

or Halanay [8]).

We define the semi-group of operator U(t) : C »C by
u(t)e = u.(e) ,

where u(®) is the solution of (2) with initial value ¢ at zero. For each
t >0,7 >0, Ut) 1is a bounded linear operator satisfying U(t + 1) = U(t)U(t).
In terms of the matrix 1 appearing on (3) we find that the characteristic

values of (2) are given as the roots of the characteristic equation

() det (AN I - fo[dn(e)]ew) =0

-




There are only a finite number of roots of (4) in any half plane Re z 2 7,
and each of these roots has finite multiplicity.

If AN has multiplicity k, then there are k, and no more than k linear
independent solutions of (2) of the form y(t) = p(t)eXt, where p(t) is a
polynomial with coefficients in En of degree = k-1,

We observe that these solutions can be prolongated backwards, i.e., there

is a function y: R _’En, such that
u(y )(t) = y(t-7) for t, 7 eR.

Let Y denote the matrix having as columns the k 1linealy independent
solution mentioned above. Then there exists a constant matrix B, with A

as only characteristic value, such that
Y(t) = Y(o)eBt , teR.

If we define ¢ = YO, i.e., the matrix whose columns are the elements of

C corresponding to Yo then we have:

Bt

Y, = U(t)e = e, ¥(8) = @(o)eBe, oe[-r, 0].

This relation says that @ 1is the basis of a finite dimensional sub-
space P(A) of C which is invariant under U(t). In this subspace we can
extend the definition of U(t) to negative values of t by taking U(-t) =
¢ e—Bt.

Given any finite set A = {Xi} of characteristic values of (2) it is
possible to obtain a set of functions of the form y(t) = p(t)exit, t €R,

such that, if Y denotes the matrix whose columns are this basis, there exists

a constant matrix B such that
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(5) Y(t) = 1(0)e®Y | ¢ e R,

where B has as characteristic values the elements of A.
The linear subspace spanned by the columns of Y0 =& 1is called the

generalized eigenspace associated with A, and will be denoted by P(A).

If @ 1is an element of P(A) we have then

Bt
(6) ut(cp)=U(t)(p=<l>e b, ®=0b .
That shows that in P(A) the behavior of the solution is the same as
that of an ordinary differential equation with constant coefficients.
If L is a real functional (L : C —*Rn), and we are only interested

in the real part of Uy then we know that both A and A are characteristic

roots. By associating A with A we can choose ® as a matrix whose elements

are real functions and such that their columns form a basis for the real part
of R(A). In this case B will be a real constant matrix.

We will next characterize the space Q(A) complementary to P(A) which
will be also invariant under the operator U(t) for t z 0. Every element @
of C will then be uniquely expressible as the sum of an element of P(A) and on
These elements are called the projections of @ on P(A) and Q(A) respect-

ively. If pp and Pq designate the operators of projection we can write

(7 ? = 2p(®) + p (@) -

To abbreviate we designate pP(m) and pQ(@) by @P and @Q respect-

ively. We write then (7) as

P
=9 + @Q .

e of Q(A)
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We obtain the characterization of Q(A) with the help of the following

equation, known as the adjoint to (2)

° 1
(8) ¥(s) = - J[an (8)Iv(s-6) , s=0,

(nT is the transpose of 1), .and its associated charactertistic equation

(9) det (AT - fo[qu(e)]em) =0.

-r

The solutions of (4) and (9) are the same. A solution of (8) is uniquely

dgf *

determined by giving an initial condition ¥ in C([O, r],En) C at O,

and integrating (8) for s £ 0. Toany ® in C and V¥ in c® we associate

the bilinear form (¥, @) defined by

o &
(10) (v, @) = ¥vo(0)9(0) - J J (& - 8)[an(o)Iw(E)at .

If ® is a basis for P(A) and Y is a basis for P*(A) (the generalize

[s9)

eigenspace of A in C*), then (¥, ®) = (Wj, mk)) is non singular and, by

changing the bases, can be taken as the identity matrix. Let us then assume
(11) (Y, @) =I.
The space Q(A) is characterized by

(12) UA) = {p ec: (¥, ¢) =0}.

If ¢ € Q(A), then U(t)p € Q(A) for t z 0. In this case the solutions
are not necessarily defined for negative t as in P(A).

We have then that the projection operator is defined by

Pp

P
¢ =pP = (v, 9)
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and
¢Q =pP =9 - pP
Q pt
Consider now the equation
(13) x(t) = L(xt) + N(t, xt).

We want an expression, similar to the variation of parameters formula,
which will give the solution of (13) for a given initial value in terms of
the solutions of (2).

Let X(t) be the n X n matrix whose columns are the solutions for
t 2 -r of equation (2) with X(t) =0 for t in [-r, 0) and X(0) = I,
the identity matrix. Then we have the following representation for the
solutions of (13) with initial value ¢ at o (see Halanay [8],[9] and Hale-
Perelld [10]):

t

(14) x(t) = U(t-0)9(0) + [ X(t-T)N(7, x )dT, t
o

[\
o
-

x(o + 8) = 9(8) 6e[-r, 0]

It is shown in [9] that by projecting XO on P and Q as indicated

previously, that is, by taking

P 4

X = o(Y, xo) = wT(o)
X=x - x

o) o 0 ’

the equation (14) can be decomposed as follows:
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t
xf(e) = U(t-cr)q)P(B) + fU(t-'r)xz(e)N(r, xT)d'r , teR
g

(15) N
X2(6) = u(t-0)o(0) + JO(t-7)XHO)N(7, x )at, tz o0
g

From now on, in order to abbreviate, we will not write the 6 when

using these formulas.
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II. The nonautonomous equation

Consider equation (2) and assume that A 1is the set of all of its
characteristic roots of the form 1 E%E , n integer. We know there is only
a finite number of such roots., Assume, moreover that the dimension of the
eigenspaces spanned by these roots coincide with their multiplicity. Then
P(A) will consist of all those functions which are initial values of T-per-
iodic solutions of (2).

According to (6) the orbits (or paths) of the equation in P(A) are
given by ut(Q) = ¢eBtb, where @ = b and B is a p X p matrix which
has the elements of A as eigenvalues and has simple elementary divisors.
Notice that p and n are not related, and any can be larger than the other.
If w(t) = (¥Y,w,) we have that for u, in P(A), w(t) satisfies the linear

equation

(16) w(t) = Bw(t).

We introduce some more notation that we need in the next pages:

SP denotes the space of T-periodic functions y from R into EP with
the norm HyHS = sup {|y(t)], t e R],|y12 = y*y, y* the conjugate transpose of y.

2. denotes the space of T-periodic functions Xy from R into C with the
norm thH = sup {thH, t € R}, thH = sup {|x(6)|, 6 €[-r, 0]},|x| as above.

Iz s 58P denotes the operator defined by
1t B(t-1)
of) = 5 foe £(t)dT.

Notice that &(f) is of the form eBta and hence will correspond to some

solution of (16).
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By & : Z 2% we denote the operator definded by

Q(Xt) =9 ﬁ(*) Xt) .

Here we are using the notation X, R -»C even if there isno x : R »E"

corresponding to it (see the definition of x, at the beginning of section I).

t
The use of this notation is similar to the abuse made when we write x(t): R »E"
which we do very frequently in order to use less symbols.

To begin with we will find necessary and sufficient conditions for the

equation
(17) %(t) = L(x,) + £(¢) ,

with £ in 8" and L as above to have T-periodic solutions. Such con-
ditions are given in a more general theorem in [8], but we prefer to include

the proof for our case which is much simpler.

Lemma. 1,

If f €SP, then the equation

(18) y(t) = B y(t) + £(¢) ,

B as in (16), has a periodic solution if and only if #&(f) =0, and in

this case for every a € E¥ there is a unique solution y*(a) of (18) such

that A(y*(a) = s - w(a)(t) , i.e., &(y*(a)) is the solution of (16)

with initial value a EE t = 0,

Morecover the following estimate holds

T
ly*(a) - w(a)llg = K folf(T)Id'r )

where X does not depend on f or a.
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Remark: y*(a) is not necessarily the solution of (18) with initial value
a at t =0,

Proof: The solution of (18) with initial value y_  at t =0 is given

by

(19) y(t) = eBtyo + fZeB(t'T)f(T)dT .

Bt

As e y_  is T-periodic, in order to have y(t) T-periodic it is nec-

t eB(t-T)
O

e}

essary and sufficient that [ f(7)dt be T-periodic, that is, we

require the fge—BTf(T)dT = 0 or, using our notation, &(f) = O.
From (19) we have for y € sP  that e-Bty(t) = a + g(t), where

a=y,+ % fi fge_BTf(T)dT =y, +c, and g is a function in SP with mean

o)
value O.

Applying the operator & to y € sP  we obtain
Bt 1 T -BTt Bt
A1) = My, + 7 [T 12 PTe(n)ar a €) = &"a = v(a)(v).

Hence (@ gives a 1-1 correspondence between the periodic solutions
of (18) and those of (16).
From the fact that
t t
lellg = 2r | e®lg J_le(x)|ar = x [ _|£(x)|ar

the last part of the lemma follows by taking K = “eBtHSk. For the matrices
Bt -Bt .
e and e we are using as S norm the supremum of the square root of

the sum of the product of their elements by their conjugates for all t.

Lemma 2.

If h isin Sn, then there exists a unique y € Q(A) such that
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t

(20) x:Q =U(t)p + [ U(t-T)Xg h(t)dT
(o]

is T-periodic.

Moreover we have

E 1 T
I Il = 'S |n(x)far

where K' 1is independent of the h chosen.

Proof: If x:Q is T-periodic we have
T Q .
P = U(T)p + foU(T-T)XO h(t)dt, that is
-1,T Q
¢ = (I-u(T)) fOU(T-T)XO h(t)drT .

We have that I-U(T) has an inverse if (I-U(T))9 = O implies

q>=00

This is the case, since we have assumed that there are no T-periodic solutions

of (2) in Q(A) ©besides the identically zero. Hence @ is uniquely determined.

Notice that IEU(T-T)Xg(G)h(T)dT is a continuous function in 6 for

[-r, ol.

¥
The expression for xtQ is
t+T

e o (I-U(T))‘l ) U(t+T-T)X§'h(T)dT .
t

t

¥*
The estimate on the Z-norm of x Q

+ is obtained as follows:

T
*Q -1 su ) Q _
I N5, = 1 (2-0(T)) “Tg[tft+T]”U(t+T 0x J In(7)]ar

T T
= IE-uE)™ sup Ju(e)x® | In(e)]dT = K S [n(7)|as
te[0, T]

6 in
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By using our decomposition (15) we obtain immediately the desired prop-

erty concerning equation (17):

Theorem 1.

The equation

(a7) %(t) = L(x,) + £(t)

with f e 8© and L as in (2) has a T-periodic solution if and only if

é?(YT(O)f) =0, and in this case, for every ®a in P(A) there exists

*
a unigue solution xt(a) such that g?(Y,xt(a)) = ePta,

Moreover the following estimate holdss

T
(21) Ixf(a) - w(0a)lly = K [ _|£(7)]ac

where K' does not depend on f,

Notice that the condition g?(YT(o)f) is equivalent to

T Bt T
Je e (0)f(r)dar =0, or

(22) :
[ F(0s(nar =0,

that is, in order for (17) to have some T-periodic solution it is neccessary
and sufficient that f be orthogonal, in the sense of (22), to the T-periodic
solutions YT(t) of the equation adjoint to (2) (See [8]),
In the case in which (2) has no T-periodic solutions besides the ident-
ically zero, then there is a unique T-periodic solution for every f in sP.
The following two lemmas follow trivially from the ones above, but we

prefer to state them explicitly for easier reference.
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Lemma 3.

If Xy is an element of X, then for every a € EY the equation

(23) | §(t) = B y(t) + ¢ (ON(s, x,) - S(Y(ON(t, x)) ,

where N(t, @) is a functional of period T in t, continuous with respect

to (t, ) and wniformly lipschitzian in ¢ in Cg,

y*(a, x)e S° such that @y (x,) = e 'a = w(a)(t).

has a unique solution

To abbreviate we are going to write

P (OIN(t, %) - B(E(ON(t, x,)) = £(x)(t)

With this notation we have for the solution y*(a, xt) of (23):

To
(2k) (s, x)(t) = 2 %(a + [Le(x ) (D)ar - 2 [ [ £(x)(7)av ao) =

eP(a + g(t))

Here g(t) stands for the unique T-periodic function with zero mean
value whose derivative is f(xt)(t).

If we want to express g(t) as an integral we have to deal with its
components separately. In fact if the components of g are complex we have
to deal separately with the real and imaginary part for each component. We
can choose &, , n; in [0, T], i=1,...,p, such that Re gi(gi) = Im gi(ni) = O.
We will have then that

t

t
(25) Re g; = fgif(xt)(T)dT and Im gi(t) = fﬂif(xt)(T)dT

have zero mean value. If £ denotes the vector of EP with components

(cl,...,gp), ¢, = & +in; , we will write
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t
(26) g(t) = f'g(xt)f(xt)('r)d'r

for the vector function with components (25). Notice that f(xt) is not
necessarily uniquely determined.
Observe that if we take a new x% € 7, the following linear property

holds for some Z(Xt + x%) with components with real and imaginary parts in

[0, T]:

t t
(27) / f(Xt)(T)dT + f(X%)(T)dT =/ f(x%)(T) + f(xt)(r))dr.

Tx,) () ()

This fcllows because both terms of the first member have mean value
zero and so must have their sum, h(t) say. On the other hand h'(t) = f(xt)(t) +
f(x%)(t) and there exists Z(xt + x%) in [0, T] such that the second member

of (27) is equal to h(t).

Lemma L4,

If X, € Z, then under the same hypothesis as above, there exists a

unigue ¢ in Q(A) such that

t
V(t)e + [ U(t-T)XQ N(7t, x_)dT
o o] T

The main purpose of this section is to give conditions under which the

following equation has T-periodic solutions:
(28) x(t) = L(xt) + N(t, x, m).

Here L 1is as before and N(t, @, p) fulfills the following conditions

in the region R X CH X [-uo, po] for some H, p_ >0 :
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i) N(t, ¢, ) is continuous in (t, 9, u), N(t, 0, 0) = O,
ii) N(t, 9, u) is T-periodic in t,

i11) |N(t, @, u) - N(t, 9, W] = alul, B) (o - o

P Py in CH for some continuous function 7 defined in [O,uo] x [o, HO],
nondecreasing in |p| and H and 1n(0, 0) = O.

The above conditions are encugh to insure locally the existence and
uniqueness of solution for any ¢ in [-po, uo] and any initial condition
® in CH at a time o in R. If we do not leave CH for any t, then
the solution is defined for all t 2z 0, and if for some @ we have that
XT(¢) =9, xt(o) € Cy for t e [0, T], then we can take xt(w) T-periodic
for every t in R. Notice here that it may happen that there is no unigue-
ness of solution going backwards in time, It may occur that two solutions
with different initial conditions at o coincide after some t > o. For
instance the equation X = Ax considered as a lag equation in the phase
space C([-r, O], E'), r >0, is such that any solution with initial con-
dition ¢ such that ©(0) = 0 will be zero for t 2 O.

For any @, 0 <@ < 1, and for any a € B fulfilling || eBtaHZ £ aH,

we denote by Za the following subset of ZX:

s H

(29)  z = (x, €Z:0(x)=0¢Ta, || 20x)lysan, | xlysH,

i.e. the set of those T-periodic solutions from R into C which never

B
leave the ball CH and such that their "average" O equals @ e ta and
is contained in the smaller ball CaH .

We do not make explicit the choice of Q@, but we have to keep in mind



that its value is fixed throughout the whole reasoning. Notice also that if 1

is independent of H our results will be valid for any H if p is small enough.

Lemma 5.
i P lpePlall =
There exist Hy >0, H>O0 such that for every a € E° with [[oe ajly = oH
there exists a unigue X, = xt(a, k) in Za y satisfying the relations
s

(30) 7(t) = By(t) + ¥ A4 (0)N(t )

y = By(t) + (O) N(ty Xeo k) -Oy (O)(,Xt) k),

Q Q, Q
(31) x = U(t)x; + [ U(t-7)X] N(r, X, M)At

o

for every p with lu‘ s Hy o Furthermore this xt(a, 1) is continuous on

(a, u).

Proof':

We use the notation

-Bt

(52) n(xg, w)(t) = e DT (OIN(E, x,, u) - SET(ON(S, X, 1))

for the function of t which results from substuting a given Xy in X in

the right hand side of (32).
If we take 2z, in Z and substitute it in (30) and (31) we obtain two

uncoupled equations:

(53) 5(t) = By(t) + e™n(z,, u)(t)
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t
(34) X% = U(t)xg‘ + [ U(t-'r)Xg‘N('r, z.y M)AT ,

o}

According to Lemma 3, for any a in EP equation (33) has a unique

T-periodic solution given by

t
(35) y*(t, a, Zys p) = eBt(a + [ n(zt, u)(t)ar) .
t(z, ;1)

In a similar way, according to Lemma 4, equation (34) has a unique

periodic solution x% given by
t+T
(36) x, Xz, 1) = (I-U(1))" ft Ut + T -1)XA(T, z, AT

Let's define the operator %(a, p) from £ into I by

(37) Fla, w)(z,) = 0ty 8, 2z, b) + xE Az, 1) =

Fla, u)(z,) +F s, u)lz,).

We will show that for i, H small enough ?(a, u) maps Za,H into itself and
that it is a contraction. Consequently there is a unique element in Za H
3
fixed under %(a, u).
Bt . .

The fact that Q( % (a, “)(Zt)) = ® e a is obvious. We have to show

now that | $(a, u)(z )|ls s H if 2z, is in Z and p is sufficiently
4 t"'z t a,H

small.

From Lemma 1 we have the estimate
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Iv#(e By sk f |
v*(t, 8, z,, ) - e aj s K e n(zt, w ()|t ,
o

for some K independent of n.

Since Hé7(f)”s = ”ﬂls, we get the estimate

1F (8, w)(z ;= loy*(t, a, 2, Wy s

lo e®ally + 25t || o fligll (n(] ul,1)x + «(lul))

A

b+ KK(n(|ul,H) + k(|ul)) =

where K 1is continous, increasing and «(0) = O.

By Lemma 2 we have

7%, w) (2l = 26Tyl (o] ), 18 + k(jul)) =

= K'K'(n(|u,0)H + « (Ju)) .

It is sufficient to take

(n(lel,H) + k(|p]))(Kk + K'K') S H - b

to have | % a, u)(zt)“z S H and hence #(a, u)(zt) in ZQ,H' Due to the

continuity of 7 and K we can choose ui > 0, Hl
Hl(l - )

d th i < gt
, an en % (a, u) maps Za,Hllnto Za,Hl for |u vy

>0 such that n(pf,H)H +c(n}) =

Kk + K'k!
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We will now prove the contracting property of %#(a, u), namely that
for |u| small enough then exists a Bl < 1 such that for Zy and z% in

z the following helds:
a,H

(58) 158, W)(z) - F(a, I, = 8)lz, - 2y -
According to (3%2) and (35) we have

1F" (2, W) (z) - F (8, Wy S

=

A
)
—

(n(zy, w)(7) - n(zg, w)(7))ag

!
zy Zt) s

A

2 o T n(lul, D%z, - zlls = () Kz, - 20 -

Using (36) we get:

A

17X, u)(z,) - F(a, W

T

k' [ |N(T, Z,) ) - N(t, z}, p)ldr =
o]

A

A

KT n(lul )iz, - 2 Il -
We can choose u} >0, H, >0 such that n(lul, E)(k + K'T) <1 for ln| = Wy

By choosing ui = min [ui, ui} and H = min [Hl’H2) we conclude that (38) holds for

all |u| = Hy -
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Hence there is a unique element xt(a, p) of £, such that

(39) Xt(a) K) = %(a, l»‘-)xt(a" K)

Fron the continuity of %*(a, u) and from the contracting property it

follows that xt(a, p) 1is continuous on (a, u) .

Theorem 2

1f for some particular (a, ) fulfilling the requirements of Lemma >

it happens that xt(a, u), solution of (39), fulfills the relation

(40) O (ON(t, x.(a, 1), W) =0

then x(a, w) is a periodic solution of (28) and, conversely, if it(u),

lul < W, » 1is a periodic solution of (28) in £, then %t (k) = xt(a, )

for some a.

Proof:

The first part is obvious, and the second follows from the fact that
?(t(u) fulfills (28) for every t € R and it has to fulfill (30),(31) and
(LO) according to the properties of () The results follow from the unique-
ness of solution in Za,H of (30) and (31).

Equation (40) is generally known in the literature as "bifurcation
equation” or "determining equation".

Notice that if A is empty, i.e., (2) has as only T-periodic solution

the identically zero, then there is no relation (40) to fulfill and we conclude




that equation (28) has a unique periodic solution xt(u) which depends con-
tinuously on u and tends to O as u =0, i.e., xt(O) = 0.

The method to determine T-periodic orbits of (28) for small u 1is then
to find xt(a, u) corresponding to (30), (31) for |u| in some interval
[0, u], substitue this value in (40) and solve for a in terms of u.

This method is too difficult to be practical. The main difficulty deriving
from the fact that xt(a, u) is generally not known explicitly. On the
other hand for any (a, p) we can find a sequence xik)(a, u), of T-periodic
function converging uniformly to xt(a, ) due to the fact that it is the
fixed point of a contracting mapping.

The sequence is given by:

(L1) xgo)(a, py = 9@ ta

!

(e, ) = Fla, Wt (s, w)

Notice that due to the form of “F(a, u) we have xt(a, 0) =0 et .

If é?(YT(O)N(t, xt(a,,u),u)) is differentiable with respect to a we
can apply the implicit function theorem and decide on the solvability of a
as a function of u in equation (40).

In order to insure this differentiablity we will ask for further re-

striction on N.

Lemma 6

If N(t, 9, u) is as in Lemma 5 and moreover D¢N(t, P, u) exists

and is lipschitzian in @ with Lipschitz coefficient T(|n|,H), 7 with the
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same properties as in Lemma 5, then the fixed point xt(a, B of F(a, W)

and g?(YT(O)N(t, xt(a, n), 1)) are differentiable with respect to a for p

and H sufficiently small.

Remarks: The symbol Dcp stands for the Fréchet derivative and Daf, with f
a p-vector function, is a p X p matrix.

Notice that if N(t, @, u) = pN*(t, ®), with N* and D@N* lipschitz-
ian the conditions of the lemma are fulfilled.

If n, 17 do not depend on H the results are valid independently of H.

Proof:

B
We use induction on the sequence (41). We have Daxﬁo)(a, p) = de t.

Assuming that Daxik)(a, ) exists we have:

t

p y ) (a, wy(t) = P51 4+ J

o D, n(xik)(a, n), w)(r)dr —

T t
C 31160, ), W(Daws)

t+T

Dax£k+l)Q(a, W) = (T-U(T) ™ u(t+T-) XD N(s, X(Tk)(a, W) m)dr -

t

(k)

+ (a, K),n) and DaN(T, xik)(a, u),H) exist due to our

Here D n(x
a

hypothesis on N.

Notice that if the mean value of xik) is zero, so is the mean value
of D x(k)(a, u).

at

k+1l . Bt

Hence Daxi )(a, ) exists and is continuous. Moreover if |le “s <M,
we can choose W small enough as to have HDaXik)(a, “)“Z <M for all k.
This can be proved by induction taking into account the Lipschitz property

of D@N(t, ®, 4) in the same way as we proved in Lemma 5 that %%(a, p) maps
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za,H into Za

H -
2

We check next that Daxgk)(a, p) converges uniformly in Za to some
function matrix, which is precisely Daxt(a, H).

Notice that X 1is a complete space and that the sequence of function

matrices Daxgk)(a, u) 1is a Cauchy sequence, as we show in the next paragraphs:

(42) 1D x5 (a, u) - 0 x{F)(a, W =

A

A e (s g - )
+ 7wl 0y X E D)

Here we are using as norms of the function matrices the supremum of
the norms of its columns considered as vectors

The constant Kl depends on M and K2 on the upper bound of D@N

on CH.

From (%8) into (41) it follows that
k

°

-8
1 1

k 1 0
1 (a, w)-x,(a, Wy = I (e, 1)-x{(a, Wi,
Denote by &, the maximum of -ﬁ(‘ul,H)Kl and (||, H)X, and choose u,
small enough to have 62 < 1l. Let ® be the maximum of 61 and 62. Then
it follows from (L2):

1D (e, 1) - 0¥ (s, W) =
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< a(a_ka_f’k'—l) I =P (a, W) - {0 (a, Wil +
1-20° Z

v 5 0 (a, ) - 0N (e, W s

B Y N L R e

¢ 8 ol 00 2

s 0 g D) Loy

1.9

Here A stands for (6k + Sk'l)/(l - 8), and L is a constant factor

t

o0

2 kBk converges, it follows that {Daxik)(a, n)} is a Cauchy sequence con-
k=1

verging to some element of X which is Daxt(a, M.

. 1 0 1l 0
relating the norms of Hx( )-xi )”Z and HDaxi ). Daxi )H . As we have that

We are now in condition to state the following theorem which represents

the most practical result of the method.

Theorem 3

If N fulfills the conditions required for Lemma 6 besides i),ii),iii)

above, with 17, 1 depending only on |u| and if

(43) B (0)N(t, @ &

) 0)) =0

get (0, B(F(O)N(t, & e¥a, 0))) 40,

then there exists

W, >0 such that equation (28) has a T-periodic solution
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x:(ao, u) for Ju| < Wy - This solution is continuous in p and x:(ao, 0) =

Bt
e a.
o

Proof:
. Bt . ;

Notice that ® e ‘a = Xt(ao’ 0). From the continunity of xt(a, ®)
with respect to u it follows, by applying the implicit function theorem
to (40), that for a = a, and W =0 we can express a asa function of
i such that a(0) = a_.

¥*

The solution xt(a, u) 1is given by x%(ao, B) = xt(a(u), H).

By
a

Evidently x%(ao, 0) = Xt(ao’ 0) =® e ’a , and this completes the

proof.

Remark: The lemma will still be true even if 10, n depend on H if a, = 0,
since we used the property only to check that ®eBtaO = Xt(ao’ 0).

Notice also that if H has a factor € we can take it out and consider

equations (43) divided by € and we obtain the desired results.
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III. The autonomous equation

We will apply here the results of the preceding section to some auton-

omous equations, in particular to those of the type
(4k) 5(t) = L(zt) + N(zt, ny ,

L and N fulfilling the same conditions of the previous section.

In order to show how the things should be done in the real case we are
going to assume that L and N are real functionals over the space C =
c([-r, 0], R”) and we look for real solutions of (44). The complex case is
alike but a little simpler because we can diagonalize B and with every eigen-
value we don't need the conjugate to be also an eigenvalue.

In the real case we can always choose ® (see section I) in such a
way that the matrix B is of the form
(45) B = diag (oq, Cip +ers C

)

r

Here Oq stands for the q X q zero matrix, and nw are the imaginary
parts of the elements of A, n, ranging in the positive integers. It may
happen that two n. have the same value for a finite number of indexes.

Contrasting with the nonautonomous case, we cannot expect to preserve

the period T = 2w/w under perturbation., However we do expect that if some
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periodic zolution of (44) tends to some periodic solution of (2) as p tends fo
zero, then its period is going to tend to T.

We are going to look for periodic solutions of period T(u) = 2W/GKH),
with (p) = w + uny, where we have to determine 7 in function of p and
the particular solution of (2) to which we approach when u tends to zero.

With the notation

B(w(n)) = diag(Oq, Cl(w(u))) "';Cr(w(“)));

(46)
0 ni(a>+uﬂ)
Ci(w(u)) =
-0, (o + pn) 0

we write (44) as

#(5) = Blo(0))w(t) + ¥ (OIN(ew(t) + 25 b)
(47)
t
Q U(t)zg + U(t-T)X%N(@W(T) + 22 p)dat

z, = g
o
where w(t) = (¥, Zt)'
If we apply the change of variables

(48) w(t) = eB(m(u))ty(t), z% = x% ,

we obtain the systems
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Q@QQWMHRMNHH%“0+

y(t) =pe

(49) + PO o)n(ae PO D Ey(4) 1 52, W),
t
x% = U(t)xg +pf U(t-T)XgN(QeB(w(H))ty(T) + Xy pldt |,

which is of the form

y(t) = AY(t) + F(t) y(t); X%, Hy 1)

(50)
t
= U()xd ¢ [ U(e-X 6(1, y(1), x5 w, )T,

Q
%t
with A = Oq and F and G T(p)-periodic in +t.
The functions F and G fulfill all of the conditions which are
necessary to apply Lemma 5 and Theorems 2 and 3, even if in this case (50)
does not correspond to any single equation like (28). Let us remark again

that by x, we are denoting a functional dependence of elements of C on

t
R and we don't require the existence of x(t) such that x(t + 6) = xt(e).

If we take
T(p)

(51) fla, n, w) = [ F(1, y(1, 8, n, W), xg(a, Ny W), M, M)AT,
(o]

then we obtain that analogously as in Theorem 3

(52) f(ao) no) O) =0, rank (D(a,n)f(aoy M 0)) =p

o’
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are sufficient conditions to insure the possibility of expressing a and 7
as functions of u.

In this case we can determine 7 and p-1 components of a as func-
tions of p and the other component of a. The arbitrariness of one of the
components of a 1is due to the autonomy of the system, in which a l-parameter

family of periodic solutions corresponds to every closed orbit.
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IV. The stability of periodic solutions

The results of section II can also be used to determine the stability
characteristics of periodic solutions of functional differential equations.

Consider, for instance, the equation

(44) ®(t) = L(x,) + uN(x, u) .

* . . .
Let x,  bea T(u)-periodic solution of (44). Take now z = x - x*¥

and we obtain

(53) 5(t)

L(Zt) + H(N(X%" + %) w) - N(x:: H)) =

L(Zt) + p L*(t, Zs n) + uo(lztl).

Here the linear functional L¥* is the Fréchet derivative of N(x* + @, u)
with respect to ©® and is T(u)-periodic in t.

Equation (53) gives the behavior of the solutions of (44) with respect
to x*, If we are only interested in what happens in the vicinity of x* it

is sometimes enough to consider the first variational equation

(54) z(t) = L(zt) + pL*(t, Zis B .

In the noncritical cases the stability properties of xg can be de-

cided by the knowledge of the characteristic exponents of (54). 1In fact, if

all the characteristic exponents, except one which is zero, have negative real
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parts, then X: is asymptotically stable with asymptotic phase.

For the general theory of periocdic linear functional differential
equations see Stokes [5] and Shimanov [6]. For the stability result mentioned
above see Stokes [11].

We know that the characteristic multipliers of (54) are continuous in u
and we know their value for u = O, namely, they are given by the expontentials
of the roots of the characteristic equation (4).

Hence, if x: is going to be at all stable we have to require that there

are no roots of (4) with positive real parts. In fact we will require that all

the characteristic values of (2) have negative real parts except those in A.

*
t

to show that for u small enough all the elements of A(u) are in the left

In order to prove asymptotic stability of x, in this case it is sufficient

hand plane with the exception of one which is at O.
The decomposition of (54) by A yields the following equation for the

orbits in P(A):

#(t) = Bu(t) + u ¥ (O)TX(t, owlt) + 2¢ , 1)

Notice now that L* is T(u)-periodic and the change of variable

w(t) = eB(w(“))ty(t) s z% = x% reduces it to the form

(55) o 3(e) = p(ee BB gy BNty 4y

v BN TG x s g POy 8 ),

From the work of Stokes and Shimanov we know that corresponding to
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every characteristic exponent T there exists a solution y(t) = eTtp(t),
Q Tt.Q A . .
x, = e X, where p(t) = p(t + T(n)). (Just like in the case with no lag).
Substituting this value of y(t) in (55) and taking T = pv we obtain

the following equation for p(t):

. -B(w t B t

p(t) - -uvp(t) + u(-e ( (H)) B(n)e Qb(u)) p(t) +
(56)

+ e‘BQ”(“))tYT(o)L*(t, QeBQD(“))tp(t) + %3, k) .

This equation is of the type studied in section II, and we can find,
by means of the determinimg equations, what are the values of v for

which we have T(u)-periodic solutions of (56). These values are the

*

characteristic exponents and Xy

is asymptotically stable if all but one
have negative real parts.

In most cases we don't know what x: is exactly, but we know its
limit value when p tends to zero, and this value is in general good enough

to determine the stability conditions for small values of W.
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V. An example

Consider the equation
(57) W(t) + a3(t) + b2(t) + ka(t-r) + py(z(t-r)) = 0 ,

in which a, be, k, r and u are positive constants and V¥ is a real function
of the real variable =z such that, for any initial @ in C there is a
unique solution of (57) with initial value ® at zero for all positive t.
Equation (57) arises from a control system with a nonlinearity and a
delay of value r 1in the feedback.
For some values of the parameters and a special form of V¥ we are

going to determine the periodic solutions of (57) which tend to periodic

solutions of
(58) V(t) + av(t) + ng'/(t) + kv(t-r) = 0

as pH tends to zero.

The characteristic equation of (58) is given by

(59) X5 + ake + bgk + ke-r% =0

Using procedures similar to the ones used in Chapter 13 of [12} we find
2
that for r=2, a = (64-7)/8%, b=1 and k = am"Jé/6h, equation (59) has
exactly two purely imaginary roots *iw, w= n/8, and that the rest of the

roots have negative real parts. (For the details see[13].) This means that
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P(A) 1is a plane in C where all the periodic orbits of (58) are contained.

We can write (58) as

o)

(60) a(t) = [ dq(8)u(t + 8), u a vector with components
-r
Uy, Uy, u3 and
0 u(6) 0
n(e) = 0 0 u(e) )
-ku(6+r) -beu(e) -au(9)
where
O for t <O
u(t) =

1 for t =20 .

The matrix B and ¢ are given, respectively by

0 w
B = and
- 0
cos w B sin w @
d = -w sin w 6 w cos w 6 , 8 € [-r, O] .
2 2
-0 cos w 6 - sin w @

The value of YE(O) turns out to be
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o
T B(1-w )+ayw ap+rw B
v~ (0)

1
° v(l-a?)-wzw ar-ow Y ’

where a = 0.84 B = -030, v 1.60 and 5 = 2,25,
We write now equation (57) as

(61) X(t) = [ an(@)x(t + €) + £(x,) n(6) as

-

above, x a vector with components X1s Xpy x3 and

0
f(x ) = - 0

¥(x,(1-2))

With the decomposition

Xt = <I>y(t) + Xi’ P y(t) = (YJ Xt) >

we obtain the equation
(62) §(t) = By(t) + ¥'(0)r(oy(t) + %) .

After the substitutions are made we obtain

O SEOR  W(-v) (6) + (-2)))

(63)

Tp(t) = Ty, (8) - u T ¥y (8) + (-2
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These equations are in the form (47) and we can apply the procedure

b

explained there. We are going to take V(x) = x - x” in our example.

We apply the transformation (48) with

cosw t sinw t
Blo(w)t =
. -sin w t cos w t
We obtain for (52) with  a_ = %11  the following:
a,
-na Y g
f(ao,no,0)= 2-% - B
na; B LT, +
27 2 2
5 .0, 2a0 . 3a.2 b) 2
- =~ Yal + = Bal + = Paja, - = Ya,a
LT T g2 g2 T e )
5)
3.3 3.3 3.2 3 2
8 Bal - g Ya2 - g Yalae - g ﬁala2

By taking a, = 0, which we can do due to the arbitrariness of one of

the components of as this equation reduces to
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which yields a; = 0, N undetermined and ai = % with 1 = 0.
This means that our equation has two periodic solutions (letting aside
the phase) tending respectively to 0 and to the solution of # = Bu with
"radius" Jﬂ7§ as u tends to O.
We apply now the procedure of the previous section to compute approximately
the characteristic exponents of the first variational equation (54).
Bt

We take x¥ =0 e a , B= B(w), and we have

Bt .
y2(t) = (0(-2)e ao)2 = a;sin o t.

The value of L*(t, z,) 1is given by
0

L¥(t, z,) = 0 .

-W'(alsin wt) zl(t-2)

Decomposing Zy by A in order to have z, = o w(t) + z% and performing
the change of coordinates w(t) = eB(w(u))ty(t), z% = x% , we obtain equation

(56) with

e—B(w(H))th(o)L*(t, @eB(w(“))tp(t)) =

ol

V! (alsin @ t)(-sin w(p)t cos w(p)t)p(t) X

B cos w(p)t - v sin w(p)t

B sin w(p)t + v cos w(p)t
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As W'(al sin wt) = 1 - Bai singw t we obtain the determining equations

1,1 9 2 1,1 3,2
K+=(=7T-=7a -n+—-(=zP - = Pa
s Gr-gra) mrg(GR-gee) Py
=0 .
1 9 1,1 3 2
N+ = (_5 B + y Ba,) -k+=(=71- g Yal), \ Do |
2 4 . . .
As a; = 3 and 7 = 0, we have K given by the eigenvalues of the

matrix

which are O and -7.

As Y >0 we conclude that our solution is asymptotically stable.

VI. Higher order approximations and example.

Consider again the equation
(28) x(t) = L(x,) + N(t, Xis w) ,

where N fulfills conditions i), ii) and 1iii) and moreover admits a large
enough number of derivatives with respect to its arguments.
By means of the successive approximations given by (41) we can obtain in

some casés the coefficients of the lower order terms in the expansion of
T
(64) O(¥ (0)N(t, x,(a, 1), u) = F(a, u)

in terms of a and p. Here (64) is the determining function for (28) and

xt(a, 1) represents the unique fixed point defined by (39).




3.

We will show now how the knowledge of these terms may help us in determing
the existence and the order of magnitude of a perioic solution of (28). This
method may work even in the case in which the application of Theorem 3 has

failed because det(DaF(a 0)) = o.

O,
To simplify notation we will consider the scalar case with a, = 0, i.e.
we assume F(0, 0) = O.

Suppose also that by means of (Ml) we have been able to obtain the lowest

order terms in a and p for F(a, u). By this we mean that we can write

m m ny : n v
(67) F(a, u) = uv(koa ° 4 kja w4 L.+ kpampu P) + f(a, u) = p P(a,pu) + f(a,u),

where P(a, u) has been chosen in such a way that we take into account only the
terms lying in the side of steepest slope of the Newton polygon, i.e., the terms

for which vnj/(mo-mj) is a minimum. Let

n.
(66) A= d i=0,cee, D .

If we now substitute

—_ A
(67) a=ap
we obtain
- I -
F(a, u) = uv + Am, (kéﬁmo + ... + kpa p) + f(a, u) =
= VMo B(3) + £(5, W)-
V+Am

where f(a, p) is o(u 0) for a fixed a.
If we want to find a(p) for u sufficiently small such that F(a(p), u) =0
we apply the implicit function theorem. Owing to the form of f(i, p) what

we have to do is solve for a in
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(68) P(a) = 0 and check 5§§ 7)) £0

at these values,
If we find such a value of a we get, by using (67), that there exists

a solution of (28) which tends to O 1like

(69) a(n) = 7w

as K tends to zero.

In the case in which F(ao, 0) = 0 for a, different from zero the
treatment is analogous, but expanding in terms of a - a, - The same will
apply for periodic solutions with amplitudes tending to o« when g tends to
zero., This corresponds to the case of negative A. It can be treated by ex-
panding in terms of the recipocal of a.

We present now an example due to J. K. Hale in which the above technique
is utilized.

Consider
(66) 3(6) = (5 +1)x(-1)(1-x(1))

The unperturbed equation and its adjoint are given by

g u(t-1) and

(s) g v(s+1)

a(t)

The bases for the generalized eigenvalues & and ¥ can be chosen as:




T
| A
= V2 -
2 1 . T T
vV = ,”,2 » \Vl(e) = S1in 'é 9, \|f2(9) = COS '2— 6, 0 € [O, l]
1+ T

This choice has been made in order to have (¥, ®) = I, where here

(¥, ) = ¥(0)2(0) - ’—gfl V(g + 1)9(8)at

Equation (66) can then be written, by using

X, = oy(t) + x%, as
(= ' _ T
(57) y = By + ¥Y(0)N(x,, 1)
t
x% = U(t)(pQ + fOU(t»T)Xg‘ N(xT, pw)dt |,
where ;
0 -T2
B - ) vT(0) = /v
/2 0 2/+?
2 T 2
N(Xt’ ) = - px(t-1)(1-x7(t)) + 3 x(t-1)x7(t) .
T
Let now a(p) = - 3+ MR and
/ m
0 —5 + up
B(w(n)) = ]
-3 - ue 0

We preform the change of variables




-h6- .

= eB(w(u))tz in (67) and we obtain:

(68) 2(t) = - e BCAMbygy BN,y o BNt (oyn(x,, u) .

Here we have

. ' 2
N(x,, u) = u(zl cos wt + z, sin wt + x%(-l))(l-(-zl sin wt + z, cos wt + xi(O)) ) +

2

2
+ sin wt + x% (-1))(-z. sin wt + z, cos wt + x%(o)) .

1 2

(S|

(-zl cos wt -z,

As the system is autonomous we can altogether forget about z,, Say, and
we obtain for a vector with components (a, 0) and for B the determining

equations for p =0

5
o

L
2
v

oo
[

The only solutions is a = O, but for this value the Jacobian with respect
to a and P vanishes.

We look then for the lowest order terms.

2
In our determining equations we have terms like ua, ux%, aa, a (x3)2
Q>
t) ?

a(x etc,

We check first the order of x% . If Xy is periodic we have the representation

t
x% =/ U(t-T)X% N(x,, w)drt

-0

As N(x_, u) has pa as its lowest order term it turns out that this is

the order of x% . This means that the only terms to be considered are pa and
5

a .




Ty

Taking these into account we obtain the determining equations:

v2 3 Ll

Ve 16 v 2 v W=
ppa - g a; + =5 au = 0
v- 8 v
Hence
a= %g s B=20

We have for the jacobian with respect to a and PB:

_ 5W2a2 M LB - BWHQ . B
16v2  2v° 8v° Ve
0 pa

which differs from zero for the value obtained for a.

We have then a solution close to

el a 8
(69) Xt = <I>eB( e)t( ) , & =/\/’—% .

o}

If we substitute x by Npx in equations (66) and we get a problem which

is solvable in the first approximation:
T 2
(70) x(t) = - (3 + wWx(t-1)(1- px7(t))

The bifurcation equations turn out to be



-48-

Hence a =0 is a solution, the same as a =V% . For this last value
the Jacobian differs from zero and this proves that for u small enough there
8 L s
is a periodic solution of (70) tending to (69) with a = Vﬁ:’ or, what it is

the same, a solution of (66) tending to (69).




L2 %)
—

=49~
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